NTPsec

itchy

Report generated: Wed Mar 12 04:15:01 2025 UTC
Start Time: Tue Mar 11 04:15:01 2025 UTC
End Time: Wed Mar 12 04:15:01 2025 UTC
Report Period: 1.0 days

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -635.986 -635.986 -468.167 -20.669 483.068 912.448 912.448 951.235 1,548.434 279.983 -31.824 µs -4.137 10.85
Local Clock Frequency Offset 11.294 11.294 11.327 11.374 11.445 11.490 11.490 0.118 0.196 0.037 11.375 ppm 2.937e+07 9.061e+09

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 153.331 153.331 166.294 226.780 439.060 494.335 494.335 272.766 341.004 78.450 249.180 µs 18.2 67.13

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 9.449 9.449 10.099 13.846 39.102 41.802 41.802 29.003 32.353 8.602 17.628 ppb 5.791 18.09

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -635.986 -635.986 -468.167 -20.669 483.068 912.448 912.448 951.235 1,548.434 279.983 -31.824 µs -4.137 10.85

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 192.12.19.20

peer offset 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 192.12.19.20 -0.780 -0.780 -0.646 -0.034 0.508 1.354 1.354 1.154 2.134 0.371 -0.048 ms -3.931 11.06

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 204.34.198.40

peer offset 204.34.198.40 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 204.34.198.40 -15.022 -15.022 -14.950 -14.300 0.286 0.420 0.420 15.236 15.442 3.918 -13.113 ms -92.13 427.8

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net)

peer offset 2600:3c03::f03c:91ff:fe0c:601c plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net) -1.427 -1.427 -1.235 -0.361 0.455 0.713 0.713 1.690 2.139 0.424 -0.379 ms -12.59 38.88

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2610:20:6f96:96::4 (time-d-b.nist.gov)

peer offset 2610:20:6f96:96::4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2610:20:6f96:96::4 (time-d-b.nist.gov) -505.170 -505.170 -239.683 131.382 409.025 513.773 513.773 648.708 1,018.943 204.976 107.868 µs -2.07 5.77

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 192.12.19.20

peer jitter 192.12.19.20 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 192.12.19.20 0.143 0.143 0.153 0.479 33.976 34.010 34.010 33.823 33.867 10.914 5.426 ms 0.2771 2.715

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 204.34.198.40

peer jitter 204.34.198.40 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 204.34.198.40 0.121 0.121 0.125 0.308 8.631 9.761 9.761 8.506 9.640 2.850 1.564 ms 0.5084 2.755

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net)

peer jitter 2600:3c03::f03c:91ff:fe0c:601c plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net) 0.052 0.052 0.062 0.172 0.929 1.162 1.162 0.867 1.109 0.278 0.315 ms 1.646 4.133

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2610:20:6f96:96::4 (time-d-b.nist.gov)

peer jitter 2610:20:6f96:96::4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2610:20:6f96:96::4 (time-d-b.nist.gov) 70.704 70.704 73.727 152.788 416.616 565.706 565.706 342.889 495.002 100.400 175.837 µs 4.435 15.49

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 11.294 11.294 11.327 11.374 11.445 11.490 11.490 0.118 0.196 0.037 11.375 ppm 2.937e+07 9.061e+09
Local Clock Time Offset -635.986 -635.986 -468.167 -20.669 483.068 912.448 912.448 951.235 1,548.434 279.983 -31.824 µs -4.137 10.85
Local RMS Frequency Jitter 9.449 9.449 10.099 13.846 39.102 41.802 41.802 29.003 32.353 8.602 17.628 ppb 5.791 18.09
Local RMS Time Jitter 153.331 153.331 166.294 226.780 439.060 494.335 494.335 272.766 341.004 78.450 249.180 µs 18.2 67.13
Server Jitter 192.12.19.20 0.143 0.143 0.153 0.479 33.976 34.010 34.010 33.823 33.867 10.914 5.426 ms 0.2771 2.715
Server Jitter 204.34.198.40 0.121 0.121 0.125 0.308 8.631 9.761 9.761 8.506 9.640 2.850 1.564 ms 0.5084 2.755
Server Jitter 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net) 0.052 0.052 0.062 0.172 0.929 1.162 1.162 0.867 1.109 0.278 0.315 ms 1.646 4.133
Server Jitter 2610:20:6f96:96::4 (time-d-b.nist.gov) 70.704 70.704 73.727 152.788 416.616 565.706 565.706 342.889 495.002 100.400 175.837 µs 4.435 15.49
Server Offset 192.12.19.20 -0.780 -0.780 -0.646 -0.034 0.508 1.354 1.354 1.154 2.134 0.371 -0.048 ms -3.931 11.06
Server Offset 204.34.198.40 -15.022 -15.022 -14.950 -14.300 0.286 0.420 0.420 15.236 15.442 3.918 -13.113 ms -92.13 427.8
Server Offset 2600:3c03::f03c:91ff:fe0c:601c (scratchy.podsix.net) -1.427 -1.427 -1.235 -0.361 0.455 0.713 0.713 1.690 2.139 0.424 -0.379 ms -12.59 38.88
Server Offset 2610:20:6f96:96::4 (time-d-b.nist.gov) -505.170 -505.170 -239.683 131.382 409.025 513.773 513.773 648.708 1,018.943 204.976 107.868 µs -2.07 5.77
Summary as CSV file

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of kurtosis. A normal distribution has a kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the Pearson's moment coefficient of skewness. Wikipedia describes it best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!